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Abstract

In this article we discuss some methods of visualizing complex roots of a cubic equation, with
examples. First we present a brief history of cubic equations and define the roots of general cubic
equation. The first method presented is De Moivre’s method, folloved by geometric interpretation
and graphic determination of the roots and other more or less known methods.

1 Introduction
In this article we discuss a few methods of visualizing the complex roots of cubic equations, with
examples. Visualization is very important, because, as we shall see, abstract concepts and symbols
which are difficult to understand can be presented much easier. Even at school students fail in learning
mathematics because teachers do not pay attention to the basic concepts and use formulas without
explaining where they came from and will not try to present them in a visual way, using computers
and computer softwares.

Another outcome of this article is the proof of Bardell’s observation which stated that in the case
of a general cubic equation az3 + bz2 + cz+d = 0 if the coefficients satisfy the b2−3ac = 0 equation
then the z1, z2, z3 ∈ C roots form an equilateral triangle (see theorem 2 and it’s proof). For generating
the images we used the software packages Geogebra and Matlab.

2 History of the different solutions
Cubic equations have been known since ancient times. One of the simplest and oldest studied cubic
equations is the one connected with the problem of doubling the cube. According to the legend the
citizens of the ancient Delos consulted the oracle of Delphi in order to solve their problems. The
answer of the oracle was that they must double the volume of the altar of Apollo, which was a
cube. Although the task seems simple, it has been proven impossible to fulfill with a compass and a
straightedge.

At the beginning of the 16th century, the Italian mathematician Scipione del Ferro found a method
for solving the x3 +mx = n class of cubic equations. All cubic equations can be reduced to this form
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if we allow m and n to be negative, but negative numbers were not known to him at that time. Before
his death Del Ferro told his student Antonio Fiore about his method. In 1530, Niccolo Tartaglia
worked out a general method to solve the x3 + mx = n equation. His results were published by
Gerolamo Cardano in 1545.

François Vieta independently derived the trigonometric solution for the cubic with three real roots,
his results were expanded by Descartes.

3 Algebraic methods

3.1 Zero points of a cubic function
The general cubic equation has the form ax3 + bx2 + cx + d = 0, a 6= 0. As a consequence of the
intermediate value theorem (according to Bolzano’s theorem if a continuous function has values of
opposite signs within an interval, then it has a root in that interval) every cubic equation with real
coefficients has at least one real solution. We have three possible cases using the discriminant,

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

• If ∆ > 0, then the equation has three distinct real roots.

• If ∆ = 0, then the equation has a multiple real root.

• If ∆ < 0, then the equation has one real root and two complex conjugate roots.

For finding the general formula of the roots we consider the following:

u1 = 1, u2 =
−1 + i

√
3

2
, u3 =

−1− i
√

3

2

which are the three cube roots of unity.
We calculate

∆0 = b2 − 3ac,∆1 = 2b3 − 9abc+ 27a2d (1)

and

C =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
. (2)

The general formula for the roots is:

xk = − 1

3a

(
b + ukC +

∆0

ukC

)
, k ∈ {1, 2, 3}. (3)

There are other methods to calculate the roots of a cubic equation, like Cardano’s method or La-
grange’s method.
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3.2 De Moivre’s method
According to Bardell [4], a general cubic az3 + bz2 + cz + d = 0 with real or generally complex

coefficients may be expressed in the vertex form a(z + h)3 + k = 0 where h =
b

3a
, k =

27da2 − b
27a2

,

if the coefficients satisfy the b2 − 3ac = 0 condition. He observed that ”Only in those cases when
the cubic reduces to the vertex form do the roots form an equilateral triangle and lie equally spaced
around de Moivre’s circle. This observation applies whether the coefficients are real or complex.”

To prove his conjecture we use the following theorem [1]:

Theorem 1 Let z1, z2, z3 ∈ C be the vertices of an equilateral triangle if

z21 + z22 + z23 = z1z2 + z1z3 + z2z3. (4)

Theorem 2 (Main result) Let az3 + bz2 + cz + d = 0 be a general cubic. If the coefficients satisfy
the b2 − 3ac = 0 equation then the z1, z2, z3 ∈ C roots form an equilateral triangle.

Proof.
If z1 is the root of the cubic then az31 + bz21 + cz1 + d = 0
If z2 is the root of the cubic then az32 + bz22 + cz2 + d = 0
If z3 is the root of the cubic then az33 + bz23 + cz3 + d = 0.
Adding these three equations we get:

a(z31 + z32 + z33) + b(z21 + z22 + z23) + c(z1 + z2 + z3) + 3d = 0. (5)

We apply the Vieta’s formulas for our cubic:

z1 + z2 + z3 = − b
a
, z1z2 + z1z3 + z2z3 =

c

a
, z1z2z3 = −d

a
.

Substituting the Vieta’s formulas in the equation (5) we get

z31 + z32 + z33 = −3d

a
. (6)

If we raise the first equation from Vieta’s formulas to the third power and expand, we get:

z31 + z32 + z33 + z1z2(z1 + z2) + z1z3(z1 + z3) + z2z3(z2 + z3) = − b3

3a3
. (7)

From Vieta’s formulas, equation (6) and equation (7) follows that

1

z1
+

1

z2
+

1

z3
= − b2

3ad
. (8)

This is equivalent to
b2 = 3ac or ∆0 = b2 − 3ac. (9)

and the (2) equation will be C = 3
√

∆1.
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De Moivre’s theorem states that [5]: if p and q are integers prime to each other, then

[r(cosθ + isinθ)]
p
q = r

p
q [cos((θ + 2πk)

p

q
) + isin((θ + 2πk)

p

q
)], k = 0, 1, 2, . . . , q − 1.

This is useful for finding the
p

q
−th root of a complex number.

Example: The iz3 + (1 − i)z2 − 2

3
z + 3 − 4i = 0 cubic can be expressed in vertex form since the

condition b2 − 3ac = 0 is satisfied with (1 − i)2 − 3i(−2

3
) = 0. Then h = −i+ 1

3
, k =

82− 109i

27

and the vertex form is i(z − i+ 1

3
)3 +

82− 109i

27
= 0.

After rearrangement (z − i+ 1

3
)3 =

109 + 82i

27
. The problem is reduced to finding the cube roots of

109 + 82i

27
which by de Moivre’s method are 2.0084+0.6862i,−0.8097+1.6075i,−0.1986−1.2937i.

Indeed the roots form an equilateral triangle.

4 Geometric interpretation of the roots

4.1 Three real roots

Figure 1: f(x) = x3 − 3x2 − x+ 3

The three real roots of any cubic are the projections on the x-axis of the vertices A, B and C of an
equilateral triangle. The center of the equilateral triangle has the same abscissa as the inflection point.
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Let ax3 + bx2 + cx+ d = 0. If a 6= 1, we divide the equation by the leading coefficient.

x3 +
b

a
x2 +

c

a
x+

d

a
= 0.

After we do variable exchange x = t− b

3a
, we get the so-called ”incomplete” or depressed cubic:

t3 + pt+ q = 0. (10)

Graphically this corresponds to shifting the graph horizontally. This shift moves the point of inflection
and the centre of the circle onto the y-axis.

The three vertices of the equilateral triangle are the three cube roots of a complex number
z = x+ iy. From de Moivre’s formula we get:

z3 = (r(cos(α) + i · sin(α)))3 = r3(cos(3α) + i · sin(3α))

z3 = (x+ i · y)3 = (x3 − 3xy2)− i · (y3 − 3yx2) = r3(cos(3α) + i · sin(3α))

Since we are projecting onto the x-axis, we will need only the real part of the equation:

x3 − 3xy2 = r3cos(3α). (11)

The equation of the circle is:
x2 + y2 = r2

or equivallently
y2 = r2 − x2. (12)

We substitute (12) in (11) and dividing by 4, we get:

x3 − 3x
r2

4
− r3

4
cos(3α) = 0. (13)

We set the coefficients of the equations (10) and (13) equal, the result is:

p = −3r2

4
, q = −r

3cos(3α)

4
.

First we solve the equation for r : r2 = −4p

3
, r = ±

√
−4p

3
, this way p < 0.

Then we solve it for α : cos(3α) =
−4q

r3
, α =

1

3
arccos(

−4q

r3
), so

∣∣∣∣4qr3
∣∣∣∣ ≤ 1.

The three real roots of the cubic (10) that generate the vertices of an equilateral triangle are:
z1 = rcos(α)

z2 = rcos(α +
2π

3
)

z3 = rcos(α− 2π

3
)

For more information and for its application see [3], [15].
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4.2 One real and two complex roots
4.2.1 In the Cartesian plane

Figure 2: f(x) = x3 − 9x2 + 25x− 17

If a cubic equation is plotted in the Cartesian plane, the real root can be seen graphically as the x-
intercept of the curve. If the complex conjugate roots are written as h ± ik, then h is the abscissa
of the tangency point of a line that is tangent to the cubic curve and intersects the x-axis at the exact
point as does the cubic curve, and k2 is the slope of the tangent of the angle between this line and the
x-axis.
Let

y = ax3 + bx2 + cx+ d (14)

be a general cubic equation with one real root at p and two complex roots at h ± ik. The curve cuts
the x-axis at P (p, 0). We draw the tangent line in T (h, k2(h − p)) to the cubic which goes through
the real root P (p, 0).

dy

dx
= 3ax2 + 2bx+ c.

Since p and h± ik are the roots of the cubic

ax3 + bx2 + cx+ d = 0, (15)

from Vieta’s formulas we have :

b = −a(p+ 2h); c = a(2hp+ h2 + k2); d = −ap(h2 + k2). (16)

Putting x = h and substituting these values in (14) we get y = ak2(h − p). The tangent at the point
(x1, y1) is :

y − y1 = (3ax21 + 2bx1 + c)(x− x1). (17)
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With x1 = h, y1 = ak2(h − p) and substituting (16) in (17) we get y = ak2(x − p) as the tangent at
T (h, k2(h− p)) passes through P (p, 0). For the details see [7], [8].

Example: We consider f(x) = x3 − 9x2 + 25x − 17 and we draw the graph of the function. We
find the line which goes through the real root P (1, 0) and which is also tangent to the graph of the

function (the green line) in T (4, 3). Then k =
√

V
H

= 1 , H = h − p = 3, V = k2(h − p) = 3,
h± ik = 4± i which are the complex roots of the cubic.

4.2.2 In the Argand plane

Figure 3: p(x) = x3 − 3x2 + 9x+ 13, roots at −1, 2 + 3i, 2− 3i

Dan Kalman [12], [13] presented Marden’s theorem in the following form:
” Let p(z) be a third-degree polynomial with complex coefficients, and whose roots z1, z2, and z3 are
noncollinear points in the complex plane. Let T be the triangle with vertices at z1, z2, and z3. There
is a unique ellipse inscribed in T and tangent to the sides at their midpoints. The foci of this ellipse
are the roots of p′(z).”

The zeroes of p(x) are the vertices A, B and C of an isosceles triangle (the triangle is isosceles
because the real root is on the x-axis and the two complex conjugates roots appear symmetrically
above and below the real axis). The zeroes of p′(x) are the foci of the Steiner inellipse i. e. the unique
ellipse tangent to the three sides of a triangle at their midpoints. The zero of p′′(x) is the center point
of the ellipse and the centroid of the triangle. Marden’s theorem states that the green dots (F, G) in
Figure 3 are the foci of the ellipse. The major axis and the foci of the ellipse lie on the real axis if
the angle at the vertex on the real axis is smaller than

π

3
. The major axis is vertical and its foci are

complex if the angle is greater than
π

3
. If the angle is equal to

π

3
, the triangle is equilateral, the Steiner

inellipse is the triangle’s incircle. See, for example, [16].
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4.3 Lill’s method

(a) f(x) = x3 − 3x2 − x+ 3, roots at −1, 1, 3 (b) paper folding

Figure 4: Lill’s method

Lill’s method is a geometric approach for finding roots of polynomials with real coefficients, that can
be implemented with computer graphics, or ordinary graph paper. The method was discovered by an
Austrian engineer, Eduard Lill, and presented at the Paris Exposition, in 1867. With this method we
can find real solutions, and it will work for equations of any degree. It is a way of visualizing the
roots geometrically. See [6], [18]. We consider a general cubic equation:

ax3 + bx2 + cx+ d = 0.

If a 6= 1, we divide the equation by the leading coefficient. From the starting point (0,−1) we lay
out counter-clockwise perpendicular segments with lengths equal to the a, b, c and d coefficients. If
we have a negative coefficient we go upwards on the vertical path, and downwards if the coefficient
is positive. On the horizontal path we go left if the coefficient is positive, and right in the case of a
negative one. We construct the right angle pathway that reflects off the walls from the starting point
to the terminus (final point). One solution of the equation is given by the negative of the slope that is
x = −tan θ where θ < ±90◦ . For example, the yellow right-angle subpath reflects off of the b-line
at x = −1, providing that solution to the cubic equation.
Italian mathematician Margherita P. Beloch (1936) showed how Lill’s method could be adapted to
solve cubic equations using paper folding (origami). See [11].
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4.4 Surface plot

(a) Surface A (red) and Re y=0 (green)

(b) Surface B (blue) and Re y=0 (green) (c)

Figure 5: f(x) = x3 − 9x2 + 25x− 17, roots at 1, 4 + i, 4− i, figure generated with Matlab

We consider y = ax3 + bx2 + cx + d and X = G + iH a complex value. If we substitute it in the
equation the result is

y = a(G+ iH)3 + b(G+ iH)2 + c(G+ iH) + d,

y = (aG3 − 3aGH2 + bG2 − bH2 + cG+ d) + i(3aG2H − aH3 + 2bGH + cH) = A+ iB,

with A = aG3 − 3aGH2 + bG2 − bH2 + cG + d and B = 3aG2H − aH3 + 2bGH + cH, where
Re(X) = G, Im(X) = H,Re(y) = A, Im(y) = B. Then we plot the surfaces. The complex
roots are where A = B = 0 or Re(y) = Im(y) = 0. This is illustrated in Figure 5: we have three
points where surfaces A and B intersect each other and simultaneously intersect a horizontal plane
positioned at zero altitude. See [17].
Matlab code for Figure 5:
g = -4:0.1:6; h =-5:0.1:5; t= -4:0.1:6; tt = -5:0.1:5; x=-5:0.1:6; z=0;
f=x.ˆ3-3*x.ˆ2-x+3;
[g,h] = meshgrid(g,h);
a=g.ˆ3-3*g.*h.ˆ2-3*g.ˆ2+3*h.ˆ2-g+3;
b=3*h.*g.ˆ2-h.ˆ3-6*g.*h-h;
[Xmesh, Ymesh,Zmesh] = meshgrid(t,tt,z);
surf(g,h,a,’FaceColor’,’red’,’FaceAlpha’,0.4,’EdgeColor’,’none’);
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hold on
xlabel(’Re X’);ylabel(’Im X’);zlabel(’Re Y, Im Y’);
surf(g,h,b,’FaceColor’,’blue’,’FaceAlpha’,0.3,’EdgeColor’,’none’);
mesh(Xmesh,Ymesh,Zmesh,’FaceColor’,’green’,...

’FaceAlpha’,0.5,’EdgeColor’,’none’);
scatter3(1,0,0,’red’,’X’,’LineWidth’,2);
scatter3(-1,0,0,’red’,’X’,’LineWidth’,2);
scatter3(3,0,0,’red’,’X’,’LineWidth’,2);
contour3(g,h,b,[0 0],’y’);
hold off

4.5 Cubic equation with complex coefficients

Figure 6: f(z) = z3 − iz2 − (3 + 4i)z − 4 + 3i, roots at i, 2 + i,−2− i

When it comes to finding zeros, the complex function f(z) has an advantage: there are two equations
(real and imaginary parts of f ) for two unknowns (real and imaginary parts of z).
Example: Regarding f(z) = z3 − iz2 − (3 + 4i)z − 4 + 3i, the complex roots are : z1 = i, z2 =
2 + i, z3 = −2− i. If we substitute z = x+ iy in the equation f(z) = 0 and we expand it, we get:

(x3 − 3xy2 + 2xy − 3x+ 4y − 4) + i(3x2y − y3 − x2 + y2 − 3y − 4x+ 3) = 0.

Separating the real and imaginary parts, and setting each one equal to zero, we have two real equa-
tions:

x3 − 3xy2 + 2xy − 3x+ 4y − 4 = 0 and 3x2y − y3 − x2 + y2 − 3y − 4x+ 3 = 0. (18)

Then we plot y depending on x and x with respect to y (y as a function of x and x as a function of
y). This is illustrated in Figure 6. The cubic’s complex roots are at the intersection points of the two
graphs. See [9].
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4.6 Modulus surface

Figure 7: f(z) = z3 − 9z2 + 25z − 17, roots at 1, 4 + i, 4− i

Matlab code for Figure 7:
x=-2:0.1:6;
y = x;
[x,y] = meshgrid(x,y);
z = x + i*y;
f = z.ˆ3-9*z.ˆ2+25*z-17;
surf(x,y,abs(f),’FaceColor’,’magenta’,’FaceAlpha’,0.8,’EdgeColor’,’k’);
hold on
zlim([0 10]);xlabel(’X’);ylabel(’Y’);zlabel(’|f|’);
plot3(1,0,0,’r*’);plot3(4,1,0,’r*’);plot3(4,-1,0,’r*’);
hold off

If w = x+iy, w ∈ C, x, y ∈ R then the modulus is defined as |w| =
√
x2 + y2 ≥ 0. The modulus

surface of the function f(z) = az3+bz2+cz+d is the surface defined by three real variables x, y and
|f(z)|. The graph always lies on or above the Argand plane. |f(z)| = 0 if and only if f(z) = 0 , so
the modulus surface touches the complex plane in those particular points where the function is zero.
Complex roots are found where the modulus surface has minimum points touching the xy-plane. The
cubic function f(z) = z3 − 9z2 + 25z − 17 has the modulus surface as seen in Figure 7, where
the roots of the polynomial are 1, 4 ± i and the surface has exactly those three points that touch the
xy-plane. This method can also be used with complex coefficient polynomials and with polynomials
that have higher degree. This method enables us to see how the zeros of a polynomial move when a
single coefficient is changed(surfaces became easy to draw with the use of computer graphics). This
method is presented in [2], [17] and [14].
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4.7 Color representation

(a) f(x) = x3 − 9x2 + 25x− 17, roots at 1, 4 + i, 4− i (b) RGB cube (red-green-blue)

A graph of a complex function of one complex variable with the complex plane itself, two-dimensional
as well, is an object in four real dimensions. That’s why complex functions are difficult to visualize
in a three-dimensional space. With domain coloring we represent four-dimensional objects in two
dimensions. This method sets a one-to-one map between the RGB cube (a 3-D geometrical model of
the color additive system, a three-vectors space where each component is a color among Red, Green,
Blue) and the complex plane, so that each complex point matches only one color. With the color
wheel method we graphically represent complex functions.The color wheel method assigns a color
to the point of a complex plane.The domain coloring technique gives a continuous and bijective map
from the complex plane to the color wheel: 0 maps to white, 1 maps to red, -1 maps to cyan, and
the remaining six roots of unity map to yellow, green, blue, violet and infinity maps to black. The
phase (argument) is encoded as hue, while lightness corresponds to the modulus. The behavior and
the basic properties (zeros and their multiplicities, periodicity, symmetry and range) of the function
can be rapidly overviewed with this method. See [10],[17] ,[19].
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5 Approximate solution: Newton’s method

(c) f(x) = x3 − 3x2 − x+ 3 (d) f(x) = x3 − 9x2 + 25x− 17

Figure 8: Basin of attraction with Newton’s method

Newton’s method is an efficient way to approximate solutions of equations of the form f(x) = 0.
Newton’s method involves choosing an initial point x0 and then finding a sequence of numbers
x0, x1, x2, · · · that converge to a solution. Select a point x0 , arbitrarily close to the function’s
root. Consider the tangent line to the function f at the point (x0, f(x0)) than we can compute the
x-intercept of this tangent line at x = x1. Repetition of this algorithm generates a sequence of x
values x0, x1, x2, · · · by the rule

xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) 6= 0.

Consider f(x) = x3 − 9x2 + 25x− 17. It has three solutions at x = 1, x = 4 + i and x = 4− i.
In the table below we can see that for different starting values the Newton method converges to the
roots.

10.0000 - 0.5000i 11.0000 + 5.0000i 1.0000 + 0.1000i
7.7035 - 0.3326i 8.3667 + 3.3216i 1.0060 + 0.0005i
6.1714 - 0.2234i 6.6230 + 2.2065i 1.0000 - 0.0000i
5.1238 - 0.1581i 5.4721 + 1.4807i 1.0000 - 0.0000i
4.3201 - 0.1407i 4.7112 + 1.0472i 1.0000 - 0.0000i
3.2695 - 0.3676i 4.2113 + 0.8809i
4.7861 - 0.4576i 3.9867 + 0.9618i
4.0767 - 0.4735i 4.0002 + 1.0011i
3.7045 - 1.1505i 4.0000 + 1.0000i
3.9538 - 0.9501i 4.0000 + 1.0000i
4.0029 - 1.0016i
4.0000 - 1.0000i
4.0000 - 1.0000i

The basin of attraction of root r is the set of all x0 numbers, such that Newton’s method starting
at x0 converges to r. For example, if we pick any complex point in the yellow regions in Figure 9
(b), when it is used as the initial point in the Newton’s method, it will converge to the root 1. Every
starting value that converges to 1 is in the basin of attraction of its own. All the points converge very
quickly to their respective roots, so we can see in the picture the color shading.
In Figure 9 (a) f(x) = x3 − 3x2 − x + 3 is pictured, where the roots are x = 0,±1. We indicate by
different color shades the amount of iterations needed to converge to that particular point.
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6 Conclusion
As we have seen above, even a task that can be difficult to deal with, like computing the roots of
a cubic equation can be understandable with the use of different visualization methods, because - a
picture is worth more than a thousand words.

Using some of these methods in the classroom can attract the students’ attention and can help them
understand the problems and solutions more easily. Unfortunately, the use of computers in teaching
mathematics has its limits: in some regions of the world the technological background is missing, in
other cases teachers do not have the knowledge needed to use such methods.
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[17] Páll-Szabó, A. O., Where are the quadratic’s complex roots?, Acta Didactica Napocensia,
Vol.8(2015), No. 1, pp. 37-48.

[18] Riaz, M., Geometric Solutions of Algebraic Equations, The American Mathematical Monthly,
Vol.69, No. 7 (Aug.-Sept., 1962), pp. 654-658.

[19] Wegert, E., Visual complex functions : an introduction with phase portraits, 2012, Birkhauser
Basel

49


	Introduction
	History of the different solutions
	Algebraic methods
	Zero points of a cubic function
	De Moivre's method

	Geometric interpretation of the roots
	Three real roots
	One real and two complex roots
	In the Cartesian plane
	In the Argand plane

	Lill's method
	Surface plot
	Cubic equation with complex coefficients
	Modulus surface
	Color representation

	Approximate solution: Newton's method
	Conclusion

